


Notice how the setup is a bit different than what seen in class. Here the server has 
data, however, this data can be public (PGP keys for example).



Trivial solution - send the full dataset. This satisfies perfect client privacy, but 
obviously not great for utility.



In fact, first we need to specify what kind of FHE scheme we are dealing with. Let us 
assume the following scheme:

- Key generation procedure: sk, pk = KeyGen()
- Encryption algorithm that supports bit messages: c = Enc(pk, m), where m is a 

bit.
- The homomorphic evaluation supports mixed ciphertext-plaintext operations 

c3 = Add(c1, c2) and c3 = Mult(c1, c2), where c1, c2 can be either a ciphertext or 
plaintext.

- Decryption algorithm: m = Dec(sk, c)

Next, we need to figure out which function we want to evaluate on private inputs. 
Ideally, we want a function f(i) that takes the requested index i, performs some 
computations on the database, and returns the corresponding entry. We want to be 
able to compute this function only using Additions and Multiplications, which are the 
supported homomorphic operations in our scheme.

This exact signature, f(i), might be hard to implement, but using the indicator vector ei 
is actually simpler. Assume that the database is a n x m matrix X. A record Xi is a row 
in this matrix. Then, to obtain the requested row Xi we need to compute for each 
column j = 1, …, m:

1. ti = ei x X*j, where v1 x v2 is entry-wise multiplication
2. rj = t1 + t2 + … + t_m, where v1 + v2 is entry-wise addition

As a result, we get a vector r = (r1, r2, …, rm) corresponding to the requested row.



res_j := 0 for j = 1..m
for i in 1..n:
 for j in 1..m:

 r_ij = e_i * X_ij
 res_j += r_ij

Output res = (res_j)_{j=1}^m

This function is easy to represent using entry-wise Additions and Multiplications, 
therefore can be easily evaluated homomorphically.

The entire protocol is:

1. Setup: Alice generates a keypair sk, pk = KeyGen()
2. Query(i): q = Enc(pk, ei) entrywise.
3. Response(q): Homomorphically compute the function above.
4. Retrieve(r): x = Dec(sk, r) entrywise.

Other versions are possible. In particular, if the HE scheme supports batching — 
encrypting multiple bits into a single ciphertext — this would make for a more efficient 
scheme. The evaluated function would be different as we would work with vectors not 
single elements.



1. We are secure against an honest-but-curious server. A malicious server could 
give wrong responses or deny the service.

2. Computation: We did n * m homomorphic multiplications and (n-1) * m 
homomorphic additions.
Communication: n ciphertexts for the query + m ciphertexts for the response. 
Note that communication is linear in the size of the database. This is not good, 
as it is not far from the trivial PIR solution: send the whole database.

3. The depth is 1.



We use the same FHE scheme as before.

We can use a different function to save some communication. First, we reshape the 
data matrix X into a three-dimensional tensor [n1, n2, m], where n1 and n2 are such 
that n1 x n2 = n, e.g., sqrt(n). Then we can get the requested record using two index 
vectors ei and ej of size n1 and n2 respectively: Multiply ei by rows, and then sum them 
up. The result is a matrix n2 x m matrix T. Finally, multiple ej by T and sum again. 



1. Same as before
2. Computation: Need n1 x n2 x m = n x m multiplications and n2 x m additions for 

the first part (ei x …). Then, n2 x m multiplications, n2 x m additions for the 
second (ej x T). Communication: n1 + n2 query ciphertexts, and m response 
ciphertexts.

3. The depth is 2.



A malicious client can misbehave and send an array of 1’s for example.


