Friday Live Exercises

Homomorphic Encryption

Private Information Retrieval

Encrypted query

“I need entry #i”

b Response

Client Server

Client Privacy:
Server does not know which i Alice asked for.

Notice how the setup is a bit different than what seen in class. Here the server has
data, however, this data can be public (PGP keys for example).

Private Information Retrieval

q = Query(i)
2 i
At
‘ r = Response(q)
b r
Client Server

x = Retrieve(r)

Trivial solution - send the full dataset. This satisfies perfect client privacy, but
obviously not great for utility.

Attempt | C

: ™ How to use FHE and the indicator vector e; to implement the
protocol?

0 q = Query(i)

0

0

1 n

B r = Response(q)

0

0

0) x = Retrieve(r)

In fact, first we need to specify what kind of FHE scheme we are dealing with. Let us
assume the following scheme:

- Key generation procedure: sk, pk = KeyGen()

- Encryption algorithm that supports bit messages: ¢ = Enc(pk, m), where mis a
bit.

- The homomorphic evaluation supports mixed ciphertext-plaintext operations
c3 = Add(c4, ¢2) and c3 = Mult(ci, c2), where ¢4, ¢z can be either a ciphertext or
plaintext.

- Decryption algorithm: m = Dec(sk, c)

Next, we need to figure out which function we want to evaluate on private inputs.
Ideally, we want a function f(i) that takes the requested index i, performs some
computations on the database, and returns the corresponding entry. We want to be
able to compute this function only using Additions and Multiplications, which are the
supported homomorphic operations in our scheme.

This exact signature, f(i), might be hard to implement, but using the indicator vector e;
is actually simpler. Assume that the database is a n x m matrix X. A record X;is a row
in this matrix. Then, to obtain the requested row X; we need to compute for each
columnj=1, ..., m:

1. ti=eiXx Xy, where v X v2 is entry-wise multiplication

2. =t +t2+ ... +t_m where vs + vz is entry-wise addition
As a result, we get a vector r = (ry, ro, ..., rm) corresponding to the requested row.

res j:=0forj=1..m
foriin1..n:
forjin 1.m:
rij=e_i*Xj
res_j +=r_ij
Output res = (res_j)_{j=1}m

This function is easy to represent using entry-wise Additions and Multiplications,
therefore can be easily evaluated homomorphically.

The entire protocol is:

Setup: Alice generates a keypair sk, pk = KeyGen()
Query(i): q = Enc(pk, &) entrywise.

Response(q): Homomorphically compute the function above.
Retrieve(r): x = Dec(sk, r) entrywise.

Pobh=

Other versions are possible. In particular, if the HE scheme supports batching —
encrypting multiple bits into a single ciphertext — this would make for a more efficient
scheme. The evaluated function would be different as we would work with vectors not
single elements.

Attempt |. Analysis &

1. What is the threat model (e.g., honest, honest-but-curious, malicious server)

2. What is the computation and communication cost of the system in terms of n
(database size) and m (record size)?

3. What is the multiplicative depth?

1. We are secure against an honest-but-curious server. A malicious server could
give wrong responses or deny the service.

2. Computation: We did n * m homomorphic multiplications and (n-1) * m
homomorphic additions.
Communication: n ciphertexts for the query + m ciphertexts for the response.
Note that communication is linear in the size of the database. This is not good,
as it is not far from the trivial PIR solution: send the whole database.

3. Thedepthis 1.

Attempt Il. Sublinear communication C

N How to use FHE and the indicator matrix M to implement the
_,Ai . protocol?
q = Query()
00010
> n,
r = Response(q)
M, x = Retrieve(r)

We use the same FHE scheme as before.

We can use a different function to save some communication. First, we reshape the
data matrix X into a three-dimensional tensor [n+, n2, m], where n1 and nz are such
that n1 x n2 = n, e.g., sqrt(n). Then we can get the requested record using two index
vectors e; and e of size ny and n; respectively: Multiply e; by rows, and then sum them
up. The result is a matrix n2 x m matrix T. Finally, multiple e;by T and sum again.

-

Attempt Il. Analysis C

1. What is the threat model (e.g., honest, honest-but-curious, malicious server)

2. What is the computation and communication cost of the system in terms of n
(database size) and m (record size)?

3. What is the multiplicative depth?

-

Same as before

2. Computation: Need n1 x n;x m = n x m multiplications and n2 x m additions for
the first part (ej x ...). Then, n2 x m multiplications, nz x m additions for the
second (ejx T). Communication: n1 + n2 query ciphertexts, and m response
ciphertexts.

3. Thedepthis 2.

Server privacy
Do the protocols achieve server privacy? (The client only learns information about
the requested record)

1. Honest-but-curious client
2. Malicious client

A malicious client can misbehave and send an array of 1’s for example.

